mtcute/packages/wasm/lib/libdeflate/bt_matchfinder.h
2023-11-04 06:44:18 +03:00

342 lines
11 KiB
C

/*
* bt_matchfinder.h - Lempel-Ziv matchfinding with a hash table of binary trees
*
* Copyright 2016 Eric Biggers
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* ----------------------------------------------------------------------------
*
* This is a Binary Trees (bt) based matchfinder.
*
* The main data structure is a hash table where each hash bucket contains a
* binary tree of sequences whose first 4 bytes share the same hash code. Each
* sequence is identified by its starting position in the input buffer. Each
* binary tree is always sorted such that each left child represents a sequence
* lexicographically lesser than its parent and each right child represents a
* sequence lexicographically greater than its parent.
*
* The algorithm processes the input buffer sequentially. At each byte
* position, the hash code of the first 4 bytes of the sequence beginning at
* that position (the sequence being matched against) is computed. This
* identifies the hash bucket to use for that position. Then, a new binary tree
* node is created to represent the current sequence. Then, in a single tree
* traversal, the hash bucket's binary tree is searched for matches and is
* re-rooted at the new node.
*
* Compared to the simpler algorithm that uses linked lists instead of binary
* trees (see hc_matchfinder.h), the binary tree version gains more information
* at each node visitation. Ideally, the binary tree version will examine only
* 'log(n)' nodes to find the same matches that the linked list version will
* find by examining 'n' nodes. In addition, the binary tree version can
* examine fewer bytes at each node by taking advantage of the common prefixes
* that result from the sort order, whereas the linked list version may have to
* examine up to the full length of the match at each node.
*
* However, it is not always best to use the binary tree version. It requires
* nearly twice as much memory as the linked list version, and it takes time to
* keep the binary trees sorted, even at positions where the compressor does not
* need matches. Generally, when doing fast compression on small buffers,
* binary trees are the wrong approach. They are best suited for thorough
* compression and/or large buffers.
*
* ----------------------------------------------------------------------------
*/
#ifndef LIB_BT_MATCHFINDER_H
#define LIB_BT_MATCHFINDER_H
#include "matchfinder_common.h"
#define BT_MATCHFINDER_HASH3_ORDER 16
#define BT_MATCHFINDER_HASH3_WAYS 2
#define BT_MATCHFINDER_HASH4_ORDER 16
#define BT_MATCHFINDER_TOTAL_HASH_SIZE \
(((1UL << BT_MATCHFINDER_HASH3_ORDER) * BT_MATCHFINDER_HASH3_WAYS + \
(1UL << BT_MATCHFINDER_HASH4_ORDER)) * sizeof(mf_pos_t))
/* Representation of a match found by the bt_matchfinder */
struct lz_match {
/* The number of bytes matched. */
u16 length;
/* The offset back from the current position that was matched. */
u16 offset;
};
struct MATCHFINDER_ALIGNED bt_matchfinder {
/* The hash table for finding length 3 matches */
mf_pos_t hash3_tab[1UL << BT_MATCHFINDER_HASH3_ORDER][BT_MATCHFINDER_HASH3_WAYS];
/* The hash table which contains the roots of the binary trees for
* finding length 4+ matches */
mf_pos_t hash4_tab[1UL << BT_MATCHFINDER_HASH4_ORDER];
/* The child node references for the binary trees. The left and right
* children of the node for the sequence with position 'pos' are
* 'child_tab[pos * 2]' and 'child_tab[pos * 2 + 1]', respectively. */
mf_pos_t child_tab[2UL * MATCHFINDER_WINDOW_SIZE];
};
/* Prepare the matchfinder for a new input buffer. */
static void
bt_matchfinder_init(struct bt_matchfinder *mf)
{
STATIC_ASSERT(BT_MATCHFINDER_TOTAL_HASH_SIZE %
MATCHFINDER_SIZE_ALIGNMENT == 0);
matchfinder_init((mf_pos_t *)mf, BT_MATCHFINDER_TOTAL_HASH_SIZE);
}
static void
bt_matchfinder_slide_window(struct bt_matchfinder *mf)
{
STATIC_ASSERT(sizeof(*mf) % MATCHFINDER_SIZE_ALIGNMENT == 0);
matchfinder_rebase((mf_pos_t *)mf, sizeof(*mf));
}
static mf_pos_t *
bt_left_child(struct bt_matchfinder *mf, s32 node)
{
return &mf->child_tab[2 * (node & (MATCHFINDER_WINDOW_SIZE - 1)) + 0];
}
static mf_pos_t *
bt_right_child(struct bt_matchfinder *mf, s32 node)
{
return &mf->child_tab[2 * (node & (MATCHFINDER_WINDOW_SIZE - 1)) + 1];
}
/* The minimum permissible value of 'max_len' for bt_matchfinder_get_matches()
* and bt_matchfinder_skip_byte(). There must be sufficiently many bytes
* remaining to load a 32-bit integer from the *next* position. */
#define BT_MATCHFINDER_REQUIRED_NBYTES 5
/* Advance the binary tree matchfinder by one byte, optionally recording
* matches. @record_matches should be a compile-time constant. */
static struct lz_match *
bt_matchfinder_advance_one_byte(struct bt_matchfinder * const mf,
const u8 * const in_base,
const ptrdiff_t cur_pos,
const u32 max_len,
const u32 nice_len,
const u32 max_search_depth,
u32 * const next_hashes,
struct lz_match *lz_matchptr,
const bool record_matches)
{
const u8 *in_next = in_base + cur_pos;
u32 depth_remaining = max_search_depth;
const s32 cutoff = cur_pos - MATCHFINDER_WINDOW_SIZE;
u32 next_hashseq;
u32 hash3;
u32 hash4;
s32 cur_node;
#if BT_MATCHFINDER_HASH3_WAYS >= 2
s32 cur_node_2;
#endif
const u8 *matchptr;
mf_pos_t *pending_lt_ptr, *pending_gt_ptr;
u32 best_lt_len, best_gt_len;
u32 len;
u32 best_len = 3;
STATIC_ASSERT(BT_MATCHFINDER_HASH3_WAYS >= 1 &&
BT_MATCHFINDER_HASH3_WAYS <= 2);
next_hashseq = get_unaligned_le32(in_next + 1);
hash3 = next_hashes[0];
hash4 = next_hashes[1];
next_hashes[0] = lz_hash(next_hashseq & 0xFFFFFF, BT_MATCHFINDER_HASH3_ORDER);
next_hashes[1] = lz_hash(next_hashseq, BT_MATCHFINDER_HASH4_ORDER);
prefetchw(&mf->hash3_tab[next_hashes[0]]);
prefetchw(&mf->hash4_tab[next_hashes[1]]);
cur_node = mf->hash3_tab[hash3][0];
mf->hash3_tab[hash3][0] = cur_pos;
#if BT_MATCHFINDER_HASH3_WAYS >= 2
cur_node_2 = mf->hash3_tab[hash3][1];
mf->hash3_tab[hash3][1] = cur_node;
#endif
if (record_matches && cur_node > cutoff) {
u32 seq3 = load_u24_unaligned(in_next);
if (seq3 == load_u24_unaligned(&in_base[cur_node])) {
lz_matchptr->length = 3;
lz_matchptr->offset = in_next - &in_base[cur_node];
lz_matchptr++;
}
#if BT_MATCHFINDER_HASH3_WAYS >= 2
else if (cur_node_2 > cutoff &&
seq3 == load_u24_unaligned(&in_base[cur_node_2]))
{
lz_matchptr->length = 3;
lz_matchptr->offset = in_next - &in_base[cur_node_2];
lz_matchptr++;
}
#endif
}
cur_node = mf->hash4_tab[hash4];
mf->hash4_tab[hash4] = cur_pos;
pending_lt_ptr = bt_left_child(mf, cur_pos);
pending_gt_ptr = bt_right_child(mf, cur_pos);
if (cur_node <= cutoff) {
*pending_lt_ptr = MATCHFINDER_INITVAL;
*pending_gt_ptr = MATCHFINDER_INITVAL;
return lz_matchptr;
}
best_lt_len = 0;
best_gt_len = 0;
len = 0;
for (;;) {
matchptr = &in_base[cur_node];
if (matchptr[len] == in_next[len]) {
len = lz_extend(in_next, matchptr, len + 1, max_len);
if (!record_matches || len > best_len) {
if (record_matches) {
best_len = len;
lz_matchptr->length = len;
lz_matchptr->offset = in_next - matchptr;
lz_matchptr++;
}
if (len >= nice_len) {
*pending_lt_ptr = *bt_left_child(mf, cur_node);
*pending_gt_ptr = *bt_right_child(mf, cur_node);
return lz_matchptr;
}
}
}
if (matchptr[len] < in_next[len]) {
*pending_lt_ptr = cur_node;
pending_lt_ptr = bt_right_child(mf, cur_node);
cur_node = *pending_lt_ptr;
best_lt_len = len;
if (best_gt_len < len)
len = best_gt_len;
} else {
*pending_gt_ptr = cur_node;
pending_gt_ptr = bt_left_child(mf, cur_node);
cur_node = *pending_gt_ptr;
best_gt_len = len;
if (best_lt_len < len)
len = best_lt_len;
}
if (cur_node <= cutoff || !--depth_remaining) {
*pending_lt_ptr = MATCHFINDER_INITVAL;
*pending_gt_ptr = MATCHFINDER_INITVAL;
return lz_matchptr;
}
}
}
/*
* Retrieve a list of matches with the current position.
*
* @mf
* The matchfinder structure.
* @in_base
* Pointer to the next byte in the input buffer to process _at the last
* time bt_matchfinder_init() or bt_matchfinder_slide_window() was called_.
* @cur_pos
* The current position in the input buffer relative to @in_base (the
* position of the sequence being matched against).
* @max_len
* The maximum permissible match length at this position. Must be >=
* BT_MATCHFINDER_REQUIRED_NBYTES.
* @nice_len
* Stop searching if a match of at least this length is found.
* Must be <= @max_len.
* @max_search_depth
* Limit on the number of potential matches to consider. Must be >= 1.
* @next_hashes
* The precomputed hash codes for the sequence beginning at @in_next.
* These will be used and then updated with the precomputed hashcodes for
* the sequence beginning at @in_next + 1.
* @lz_matchptr
* An array in which this function will record the matches. The recorded
* matches will be sorted by strictly increasing length and (non-strictly)
* increasing offset. The maximum number of matches that may be found is
* 'nice_len - 2'.
*
* The return value is a pointer to the next available slot in the @lz_matchptr
* array. (If no matches were found, this will be the same as @lz_matchptr.)
*/
static struct lz_match *
bt_matchfinder_get_matches(struct bt_matchfinder *mf,
const u8 *in_base,
ptrdiff_t cur_pos,
u32 max_len,
u32 nice_len,
u32 max_search_depth,
u32 next_hashes[2],
struct lz_match *lz_matchptr)
{
return bt_matchfinder_advance_one_byte(mf,
in_base,
cur_pos,
max_len,
nice_len,
max_search_depth,
next_hashes,
lz_matchptr,
true);
}
/*
* Advance the matchfinder, but don't record any matches.
*
* This is very similar to bt_matchfinder_get_matches() because both functions
* must do hashing and tree re-rooting.
*/
static void
bt_matchfinder_skip_byte(struct bt_matchfinder *mf,
const u8 *in_base,
ptrdiff_t cur_pos,
u32 nice_len,
u32 max_search_depth,
u32 next_hashes[2])
{
bt_matchfinder_advance_one_byte(mf,
in_base,
cur_pos,
nice_len,
nice_len,
max_search_depth,
next_hashes,
NULL,
false);
}
#endif /* LIB_BT_MATCHFINDER_H */